Multipartite entanglement verification resistant against dishonest parties.

نویسندگان

  • Anna Pappa
  • André Chailloux
  • Stephanie Wehner
  • Eleni Diamanti
  • Iordanis Kerenidis
چکیده

Future quantum information networks will consist of quantum and classical agents, who have the ability to communicate in a variety of ways with trusted and untrusted parties and securely delegate computational tasks to untrusted large-scale quantum computing servers. Multipartite quantum entanglement is a fundamental resource for such a network and, hence, it is imperative to study the possibility of verifying a multipartite entanglement source in a way that is efficient and provides strong guarantees even in the presence of multiple dishonest parties. In this Letter, we show how an agent of a quantum network can perform a distributed verification of a source creating multipartite Greenberger-Horne-Zeilinger (GHZ) states with minimal resources, which is, nevertheless, resistant against any number of dishonest parties. Moreover, we provide a tight tradeoff between the level of security and the distance between the state produced by the source and the ideal GHZ state. Last, by adding the resource of a trusted common random source, we can further provide security guarantees for all honest parties in the quantum network simultaneously.

منابع مشابه

Experimental verification of multipartite entanglement in quantum networks

Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a sou...

متن کامل

Entanglement verification protocols for distributed systems based on the Quantum Recursive Network Architecture

In distributed systems based on the Quantum Recursive Network Architecture, quantum channels and quantum memories are used to establish entangled quantum states between node pairs. Such systems are robust against attackers that interact with the quantum channels. Conversely, weaknesses emerge when an attacker takes full control of a node and alters the configuration of the local quantum memory,...

متن کامل

Monogamy and Polygamy of Entanglement in Multipartite Quantum Systems

One distinct property of quantum entanglement from other classical correlations is that multipartite entanglements cannot be freely shared among the parties: If two parties in a multi-party system share a maximally entangled state, then they cannot share any entanglement with the rest. This is known as monogamy of entanglement (MoE) [1], which is a key ingredient for secure quantum cryptography...

متن کامل

Detecting genuine multipartite entanglement with two local measurements.

We present entanglement witness operators for detecting genuine multipartite entanglement. These witnesses are robust against noise and require only two local measurement settings when used in an experiment, independent of the number of qubits. This allows detection of entanglement for an increasing number of parties without a corresponding increase in effort. The witnesses presented detect sta...

متن کامل

Entanglement and Nonlocality are Inequivalent for Any Number of Parties.

Understanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that these two phenomena are inequivalent, as there exist entangled states of two parties that do not violate any Bell inequality. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Physical review letters

دوره 108 26  شماره 

صفحات  -

تاریخ انتشار 2012